skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Guan, Weilin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Stretchable and free‐form displays receive significant attention as they hold immense potential for revolutionizing future display technologies. These displays are designed to conform to irregular surfaces and endure mechanical strains, making them well suited for applications in wearable electronics, biomedical devices, and interactive displays. Traditional light‐emitting devices typically employ brittle inorganic and metallic materials, which are not conducive to stretchability. However, replacing these nonflexible components with flexible/stretchable nanomaterials, soft organic materials, or their composites improves the overall flexibility and stretchability of devices. In this review, the roles and opportunities of nanomaterials, such as thin films, 1D nanofibrous materials, and micro/nanoparticles, are highlighted for enhancing the stretchability and overall performance of various types of light‐emitting devices. By leveraging the unique mechanical and electrical properties of nanomaterials, various efforts emerge to push the boundaries of stretchable display technologies and further realize their full potential for diverse applications. 
    more » « less
  2. Abstract 2D van der Waals (vdW) materials are emerging as the next generation platform for optical and electronic devices with their wide coverage of the energy bandgaps. The strong light–matter interactions in 2D vdW layers allow for exploring novel optical and electronic phenomena such as 2D polaritons exhibiting ultrahigh field confinement, defects‐induced new quantum states, and strain‐modulated quantum confinement of 2D excitons. Far‐field optical imaging techniques are extensively used to characterize the 2D vdW materials so far, however, subdiffraction spatial resolution is required for comprehensive investigations of 2D vdW materials of which physical properties are greatly influenced by local defects and strain. This article aims to cover historical advances, fundamental principles, and distinct features of emerging near‐field optical imaging techniques: scattering‐type scanning near‐field optical microscopy, tip‐enhanced Raman spectroscopy, tip‐enhanced photoluminescence techniques, and photo‐induced force microscopy. The recent developments toward spectroscopic analysis of near‐field imaging and applications for unveiling unique properties of 2D polaritons, nanoscale defects, and mechanical strains in 2D vdW materials, are also discussed. This review article provides an understanding of emerging near‐field imaging techniques and suggests prospective applications for exploring 2D vdW materials. 
    more » « less